Detecting qualitative interaction: a Bayesian approach.
نویسندگان
چکیده
Differences in treatment effects between centers in a multi-center trial may be important. These differences represent treatment by subgroup interaction. Peto defines qualitative interaction (QI) to occur when the simple treatment effect in one subgroup has a different sign than in another subgroup: this interaction is important. Interaction where the treatment effects are of the same sign in all subgroups is called quantitative and is often not important because the treatment recommendation is identical in all cases. A hierarchical model is used here with exchangeable mean responses to each treatment between subgroups. The posterior probability of QI and the corresponding Bayes factor are proposed as a diagnostic and as a test statistic. The model is motivated by two multi-center trials with binary responses. The frequentist power and size of the test using the Bayes factor are examined and compared with two other commonly used tests. The impact of imbalance between the sample sizes in each subgroup on power is examined, and the test based on the Bayes factor typically has better power for unbalanced designs, especially for small sample sizes. An exact test based on the Bayes factor is also suggested assuming the hierarchical model. The Bayes factor provides a concise summary of the evidence for or against QI. It is shown by example that it is easily adapted to summarize the evidence for 'clinically meaningful QI,' defined as the simple effects being of opposite signs and larger in absolute value than a minimal clinically meaningful effect.
منابع مشابه
Bayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملApplication of Bayesian decision making tool in detecting oil-water contact in a carbonate reservoir
Detection of Oil-Water Contacts (OWCs) is one of the primary tasks before evaluation of reservoir’s hydrocarbon in place, determining net pay zones and suitable depths for perforation operation. This paper introduces Bayesian decision making tool as an effective technique in OWC detecting using wire line logs. To compare strengths of the suggested method in detecting OWC with conventional one, ...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملIdentifying and Tracking Switching, Non-Stationary Opponents: A Bayesian Approach
In many situations, agents are required to use a set of strategies (behaviors) and switch among them during the course of an interaction. This work focuses on the problem of recognizing the strategy used by an agent within a small number of interactions. We propose using a Bayesian framework to address this problem. Bayesian policy reuse (BPR) has been empirically shown to be efficient at corre...
متن کاملExtraction of Drug-Drug Interaction from Literature through Detecting Linguistic-based Negation and Clause Dependency
Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in t...
متن کاملIncremental Tradeoff Resolution in Qualitative Probabilistic Networks
Qualitative probabilistic reasoning in a Bayesian network often reveals tradeoffs: relationships that are ambiguous due to competing qualitative influences. We present two techniques that combine qualitative and numeric probabilistic reasoning to resolve such tradeoffs, inferring the qualitative relationship between nodes in a Bayesian network. The first approach incrementally marginalizes node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2010